Paludiculture

From Triple Performance

Climate change and the degradation of our ecosystems call for innovative solutions for land management. Among them, paludiculture is emerging as a promising approach, offering a sustainable alternative to conventional agriculture on peat soils (Interreg VB North Sea Region Programme, n.d.; Wetlands International, 2021).

What is paludiculture ?

The term "paludiculture" (from the Latin palus, meaning marsh) refers to the productive use of wet and rewetted peatlands (Wetlands International, 2021). Unlike traditional agricultural practices that require draining peatlands (Williams, 1990b), which leads to soil degradation and significant greenhouse gas emissions, paludiculture aims to maintain a high water level—ideally near or above the soil surface—to preserve the peat body and associated ecosystem services (Greifswald Moor Centre, n.d.; Interreg VB North Sea Region Programme, n.d.; Wetlands International, 2021). It can involve harvesting spontaneous vegetation or cultivating specific plants adapted to wetland environments (Interreg VB North Sea Region Programme, n.d.).

Why is it Crucial? Challenges and Solutions

Historically, vast areas of peatlands have been drained for agriculture, forestry, or peat extraction (Williams, 1990b). This drainage has major environmental consequences:

  • Greenhouse Gas (GHG) Emissions : Drained peatlands release considerable amounts of CO2​ and N2​O into the atmosphere, contributing to climate change (Pärn et al., 2018; Taft et al., 2017). Carbon emissions due to the conversion of peatlands to arable land in the northern hemisphere reached 72 billion tonnes between 850 and 2010 (INRAE, 2021).
  • Soil Subsidence : The drying of peat leads to its degradation and land subsidence, making the land unsuitable for conventional agriculture in the long term (Nieuwenhuis & Schokking, 1997; Wetlands International, 2021).
  • Loss of Biodiversity : Drainage destroys these precious habitats (Ouvrage collectif, 2021).

Paludiculture responds to these challenges by :

  • Drastically Reducing GHG Emissions : By keeping soils wet, it minimizes the decomposition of peat and the emissions of CO2​ and N2​O, while also allowing for carbon sequestration (Gini & Piva, 2019; Greifswald Moor Centre, n.d.; Heinrich Böll Foundation, n.d.; Wetlands International, 2021). A reduction of 15 to 30 tonnes of CO2​-eq per hectare per year is possible compared to common agricultural practices on drained peatlands (Gini & Piva, 2019).
  • Preserving Biodiversity : It recreates habitats for rare and threatened species, such as nesting birds, amphibians, and small mammals (Ouvrage collectif, 2021). Paludicolous birds, for example, are favored by reeds that grow in irrigation and drainage canals (Mallet et al., 2022).
  • Improving Water Quality and Retention : Paludiculture plants can purify water by trapping pollutants like nitrogen and phosphorus (Gini & Piva, 2019; Bolpagni et al., 2003). They also contribute to hydrological regulation, reducing the risk of floods and droughts (Blöschl et al., 2019).

Paludiculture Plants and Products

Paludiculture allows for the production of various renewable resources:

  • Food and Fodder : Some plants like common reed (Phragmites) or cattail (Typha) can be used as animal fodder (Mulholland et al., 2020). Nettle (Urtica dioica) is also a potential crop (Mulholland et al., 2020).
  • Building Materials and Fibers: Reed is traditionally used for thatched roofs and can be used to make insulating panels (Gini & Piva, 2019; Lacep, n.d.). Cattail (Typha) is also being considered for construction and insulation materials (Mulholland et al., 2020).
  • Bioenergy : Biomass from paludiculture (reed, cattail, alder, canary grass) can be used for the production of biogas, solid fuels (briquettes, pellets), or for heat through direct combustion, thus replacing fossil fuels (Autorenkollektiv Greifswald, 2009; FiBL Schweiz, n.d.; Gini & Piva, 2019; Mulholland et al., 2020).
  • Horticulture : The cultivation of sphagnum (Sphagnum farming) provides a high-quality raw material for peat-free growing media (Mulholland et al., 2020).
  • Other uses : Biomass can also be used for bio-based chemicals (pharmaceuticals, cosmetics, bioplastics) (Gini & Piva, 2019), or for activities like extensive farming (e.g., water buffalo for landscape maintenance) (Greifswald Moor Centre, n.d.).
Paludicultural plants and utilisation options (selection)[1]
English name Latin name Most promising uses Other uses
Uptake of cultivation very likely Peat moss Sphagnum spp.
  • Founder material for restoration and Sphagnum farming
  • Orchid cultivation
  • Horticultural growing media replacing peat
  • substrates for carnivorous plants, for vivaria with amphibians, reptiles and spiders,
  • substrate for hanging baskets, wreathes and vegetation walls
  • Insulation and packaging material
  • Food preservation
  • Medical dressings, diapers, and sanitary towels
  • Sphagnum extracts as source of natural sunscreen
Sundew Drosera rotundifolia
  • Medicinal uses
  • Vegetarian rennet for cheese making
Cattail, Bulrush Typha angustifolia, Typha latifolia
  • Insulation material
  • Filling material (seed hairs)
  • Construction material
  • Packaging and disposable tableware
  • Horticultural growing media replacing peat
  • Fodder
  • Pollen for feeding predatory mites (pest control in glasshouses)
  • Combustion
  • Biogas
  • Extraction of proteins
Reed Phragmites australis
  • Thatching material
  • Insulation material
  • Construction material
  • Packaging and disposable tableware
  • Fodder
  • Combustion
  • Paper
  • Biogas
  • Liquid fuels
  • Extraction of proteins
  • Silicon from reed leaves for high‐ performance energy storage devices
Giant cane Arundo donax
  • Combustion
  • Biogas
Reed Manna Grass Glyceria maxima
  • Fodder
  • Biogas
  • Extraction of proteins
Reed canary grass Phalaris arundinacea
  • Packaging and disposable tableware
  • Panels
  • Fodder
  • Bedding
  • Combustion
  • Paper
  • Biogas
  • Liquid fuels
  • Extraction of proteins
Sedges Carex spp.
  • Packaging and disposable tableware
  • Panels
  • Fodder
  • Bedding
  • Combustion
  • Paper
  • Biogas
  • Liquid fuels
  • Extraction of proteins
Alder Alnus glutinosa
  • Timber for carpentry, interior fittings, furniture
  • Veneer
  • Combustion
Willow Salix spp.
  • Fodder
  • Weaving material (e.g. baskets)
Bog Myrtle Myrica gale
  • insect repellent
  • flavour (e.g. beer)
  • medicinal uses, cosmetics
Cranberry Vaccinium oxycoccos
  • Food (e.g. berries, juice)
Black Chokeberry Aronia melanocarpa
  • Food (e.g. berries, juice)
Medicinal uses
Further promising plants for paludiculture Wild rice Zizania aquatica,

Z. palustris

Cereal
Japanese Millet Echinochloa esculenta
  • Food
  • fodder
Celery Apium graveolens Vegetable
Water Pepper Persicaria hydropiper Spicy leaf vegetable
Holy Grass Hierochloe odorata Flavour (e. g. for drinks)
Calamus Acorus calamus Flavour (e.g. for drinks), cosmetics
Water mint Mentha aquatica
  • Flavour, tea
  • Perfumery
  • Cloudberry
  • Blueberry
  • Rubus chamaemorus
  • Vaccinium myrtillus
  • Food (e.g. jam, juice)
  • Bogbean, buckbean
  • Meadowsweet
  • Valerian
  • Butterbur
  • Garden Angelica
  • Alder Buckthorn
  • Gypsywort
  • Water Dropwort
  • Menyanthes trifoliata
  • Filipendula ulmaria
  • Valeriana officinale
  • Petasites hybridus
  • Angelica archangelica
  • Frangula alnus
  • Lycopus europaeus
  • Oenanthe aquatica
Medicinal plants (e.g. pharmaceuticals, cosmetics)
Duckweed fern Azolla filiculoides
  • Fodder
  • Fertiliser (N‐fixation)
  • Food
  • Protein extraction
Duckweed Lemna spp.
  • Fodder
  • Protein extraction

Issues and Perspectives for Soil Professionals

The transition to paludiculture represents an agricultural paradigm shift that requires significant adaptations (Greifswald Moor Centre, n.d.).

  • Technical and Operational Challenges : Implementation often requires construction work to raise water levels, the acquisition of new equipment adapted to wet soils (low-pressure vehicles), and the development of new harvesting and processing methods (Geurts & Fritz, 2018). Risks of moisture-related damage to infrastructure can also occur, although they can be minimized through good planning and structural adjustments (Greifswald Moor Centre, n.d.).
  • Political and Economic Framework: It is crucial to define clear agricultural policies and financial incentives (subsidies, area-based payments) to encourage farmers to adopt paludiculture (Geurts & Fritz, 2018; Heinrich Böll Foundation, n.d.; Interreg VB North Sea Region Programme, n.d.). The creation of viable markets for paludiculture products is also essential to ensure their profitability (Heinrich Böll Foundation, n.d.). The sale of "carbon credits" can offer additional economic benefits (Gini & Piva, 2019). However, doubts persist regarding economic viability and political clarity, which complicates long-term planning for landowners and users (Greifswald Moor Centre, n.d.; Interreg VB North Sea Region Programme, n.d.).
  • Social Acceptance : The shift to paludiculture can be perceived as a loss of productive land or familiar landscapes (Greifswald Moor Centre, n.d.). Awareness-raising and engagement of local communities are fundamental to overcoming these hesitations and promoting the emergence of integrated regional projects (Greifswald Moor Centre, n.d.).

Despite these challenges, paludiculture offers considerable potential for the development of more sustainable and resilient agriculture (Geurts & Fritz, 2018; Greifswald Moor Centre, n.d.). It makes it possible to reconcile agricultural production with environmental preservation, thereby contributing to both the fight against climate change and the restoration of biodiversity (Geurts & Fritz, 2018). Collaboration among farmers, natural area managers, research organizations, and policy-makers is key to the success and expansion of this essential practice.

References

  • Autorenkollektiv Greifswald. (2009). Paludikultur: Nutzung nasser Moore, Perspektiven der energetischen Verwertung von Niedermoorbiomasse [Paludiculture: use of wet moors, perspectives on the energetic utilization of low moor biomass]. Universität Greifswald, Institut für Botanik und Landschaftsökologie, Institut für Dauerhaft Umweltgerechte Entwicklung von Naturräumen der Erde (DUENE) e.V.
  • Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Feigl, H., ... & Arheimer, B. (2019). Changing climate both increases and decreases European river floods. Nature, 573(7772), 108–111. https://doi.org/10.1038/s41586-019-1495-6
  • Bolpagni, R., Bartoli, M., & Viaroli, P. (2003). Caratterizzazione di acque, sedimenti e idrofite nella Riserva Naturale Paludi di Ostiglia [Characterization of water, sediments and hydrophytes in the Paludi di Ostiglia Nature Reserve]. Studi Trentini di Scienze Naturali, Acta Biologica, 80, 169–174.
  • Departament Gospodarki Wodnej i Żeglugi Śródlądowej. (n.d.). Paludikultura czym jest i dlaczego jest tak ważna dla środowiska [Paludiculture what it is and why it is so important for the environment].
  • ENAMA. (2011, June). Miscanthus sinensis giganteus Progetto Biomasse [Biomass project].
  • FiBL Schweiz. (n.d.). Ergänzende Studie zur Schaffung eines größeren Marktes und skalierfähigen Wertschöpfungsketten für Paludikultur-Erzeugnisse [Complementary study on creating a larger market and scalable value chains for paludiculture products].
  • Generalitat Valenciana. (2025, July 8). La paludicultura: una aliada de nuestros humedales y del sector primario [Paludiculture: an ally of our wetlands and the primary sector].
  • Geurts, J. J. M., & Fritz, C. (2018). Paludiculture pilots and experiments with focus on cattail and reed in the Netherlands (Technical report). CINDERELLA project FACCE-JPI ERA-NET Plus on Climate Smart Agriculture. https://doi.org/10.13140/RG.2.2.12916.24966
  • Gini, F., & Piva, F. (2019). Fibre naturali e sostenibilità: L’utilizzo delle fibre di canna palustre per una tecnologia innovativa nel riedificamento del Centro d’incontro per anziani di via Vipacco [Natural fibers and sustainability: The use of common reed fibers for an innovative technology in the rebuilding of the senior citizens' meeting center in via Vipacco] [Master's thesis, Politecnico di Torino].
  • Greifswald Mire Centre. (2018). ANNUAL REPORT 2018.
  • Greifswald Mire Centre. (n.d.). Paludikultur: Moor-Wiedervernässung Paludikultur [Paludiculture: Mire rewetting Paludiculture].
  • Heinrich Böll Foundation. (n.d.). Paludiculture - more from the marsh.
  • INRAE. (2021). Drainage des tourbières pour l'agriculture : estimation des émissions de carbone du dernier millénaire [Drainage of peatlands for agriculture: estimation of carbon emissions over the last millennium].
  • Interreg VB North Sea Region Programme. (n.d.). Paludiculture.
  • Kotowski, W. (n.d.). Ochrona wód i mokradeł w krajobrazie rolniczym [Protection of waters and wetlands in the agricultural landscape].
  • Lacep. (n.d.). La canna palustre in bioedilizia [The common reed in green building].
  • Mallet, P., Béchet, A., Galewski, T., Mesléard, F., Hilaire, S., Lefebvre, G., Poulin, B., & Sirami, C. (2022). Different components of landscape complexity are necessary to preserve multiple taxonomic groups in intensively-managed rice paddy landscapes. Agriculture, Ecosystems & Environment, 328, 107864. https://doi.org/10.1016/j.agee.2022.107864
  • Mulholland, B., Abdel-Aziz, I., Lindsay, R., McNamara, N., Keith, A., Page, S., Clough, J., Freeman, B., & Evans, C. (2020). An assessment of the potential for paludiculture in England and Wales (Report to Defra for Project SP1218).
  • Nieuwenhuis, H. S., & Schokking, F. (1997). Land subsidence in drained peat areas of the Province of Friesland, The Netherlands. Quarterly Journal of Engineering Geology, 30(1), 37–48.
  • Orsenigo, S., & Corli, A. (2022). Buone pratiche di gestione di risaie e prati umidi per la conservazione di specie vegetali di interesse comunitario [Good management practices for rice paddies and wet meadows for the conservation of plant species of community interest]. Università di Pavia.
  • Ouvrage collectif. (2021). Agir pour les zones humides - Recueil d’expériences dans les vallées du Rhône et de la Saône [Acting for wetlands - Collection of experiences in the Rhône and Saône valleys]. Fédération des Conservatoires d’espaces naturels, Plan Rhône-Saône.
  • Pärn, J., Verhoeven, J. T. A., Butterbach-Bahl, K., Dise, N. B., Ullah, S., Aasa, A., ... & Järveoja, J. (2018). Nitrogen-rich organic soils under warm well drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9(1), 1135. https://doi.org/10.1038/s41467-018-03540-1
  • Taft, H. E., Cross, P. A., Edwards-Jones, G., Moorhouse, E. R., & Jones, D. L. (2017). Greenhouse gas emissions from intensively managed peat soils in an arable production system. Agriculture, Ecosystems and Environment, 237, 162–172. https://doi.org/10.1016/j.agee.2016.11.015
  • Umweltbundesamt. (n.d.). Ökosystemleistungen und Landwirtschaft [Ecosystem services and agriculture].
  • Umweltbundesamt Wien. (2021). Moorstrategie Österreich 2030 [Mire Strategy Austria 2030].
  • Valori.it. (2024). Crisi climatica: l’agricoltura italiana sta già pagando il conto [Climate crisis: Italian agriculture is already paying the price].
  • Williams, M. (1990a). Understanding Wetlands. In M. Williams (Ed.), Wetlands – A Threatened Landscape (pp. 1–41). Basil Blackwell Ltd.
  • Williams, M. (1990b). Agricultural impacts on temperate wetlands. In M. Williams (Ed.), Wetlands – A Threatened Landscape (pp. 181–216). Basil Blackwell Ltd.
  • Wissenschaftlicher Beirat Agrarpolitik. (n.d.). Naturkapital und Klimapolitik [Natural capital and climate policy].
  1. Paludicultural plants and utilisation options (selection) https://europe.wetlands.org/download/1513/?tmstv=1753957311



This page has been written for the NBSOIL project, with the financial help of the European Union, with the help of the Centre National d'Agroécologie, of Ver de Terre Production and of Neayi